Effects of inhalation of low-dose nitrite or carbon monoxide on post-reperfusion mitochondrial function and tissue injury in hemorrhagic shock swine
نویسندگان
چکیده
INTRODUCTION Tissue reperfusion following hemorrhagic shock may paradoxically cause tissue injury and organ dysfunction by mitochondrial free radical expression. Both nitrite and carbon monoxide (CO) may protect from this reperfusion injury by limiting mitochondrial free radial production. We explored the effects of very small doses of inhaled nitrite and CO on tissue injury in a porcine model of hemorrhagic shock. METHODS Twenty pigs (mean wt. 30.6 kg, range 27.2 to 36.4 kg) had microdialysis catheters inserted in muscle, peritoneum, and liver to measure lactate, pyruvate, glucose, glycerol, and nitrite. Nineteen of the pigs were bled at a rate of 20 ml/min to a mean arterial pressure of 30 mmHg and kept between 30 and 40 mmHg for 90 minutes and then resuscitated. One pig was instrumented but not bled (sham). Hemorrhaged animals were randomized to inhale nothing (control, n = 7), 11 mg nitrite (nitrite, n = 7) or 250 ppm CO (CO, n = 5) over 30 minutes before fluid resuscitation. Mitochondrial respiratory control ratio was measured in muscle biopsies. Repeated measures from microdialysis catheters were analyzed in a random effects mixed model. RESULTS Neither nitrite nor CO had any effects on the measured hemodynamic variables. Following inhalation of nitrite, plasma, but not tissue, nitrite increased. Following reperfusion, plasma nitrite only increased in the control and CO groups. Thereafter, nitrite decreased only in the nitrite group. Inhalation of nitrite was associated with decreases in blood lactate, whereas both nitrite and CO were associated with decreases in glycerol release into peritoneal fluid. Following resuscitation, the muscular mitochondrial respiratory control ratio was reduced in the control group but preserved in the nitrite and CO groups. CONCLUSIONS We conclude that small doses of nebulized sodium nitrite or inhaled CO may be associated with intestinal protection during resuscitation from severe hemorrhagic shock.
منابع مشابه
The role of L-arginine and aerobic exercise in experimental renal ischemia reperfusion injury in male and female rats
Introduction: Renal ischemia/reperfusion (I/R) injury due to reactive oxygen species (ROS) formation is the main cause of acute kidney damage. Nitric oxide (NO) biosynthesis and oxidative stress are closely related to the pathogenesis of renal I/R injury. This study was undertaken to determine the effects of L-arginine (L-arg) as NO donor and aerobic exercise (EX) and also the combination of L-...
متن کاملInhalation of carbon monoxide following resuscitation ameliorates hemorrhagic shock-induced lung injury.
Even after successful resuscitation, hemorrhagic shock frequently causes pulmonary inflammation that induces acute lung injury (ALI). We previously demonstrated that when CO is inhaled at a low concentration both prior to and following hemorrhagic shock and resuscitation (HSR) it ameliorates HSR-induced ALI in rats due to its anti-inflammatory effects. In the present study, we administered CO t...
متن کاملInhaled Carbon Monoxide Protects against the Development of Shock and Mitochondrial Injury following Hemorrhage and Resuscitation
AIMS Currently, there is no effective resuscitative adjunct to fluid and blood products to limit tissue injury for traumatic hemorrhagic shock. The objective of this study was to investigate the role of inhaled carbon monoxide (CO) to limit inflammation and tissue injury, and specifically mitochondrial damage, in experimental models of hemorrhage and resuscitation. RESULTS Inhaled CO (250 ppm...
متن کاملNeuroprotective Effect of Mitochondrial Katp Channel Opener Upon Neuronal Cortical Brain of Rat Population
Purpose: So far there is no effective drug therapy to prevent neuronal loss after brain stroke. In the present study we studied effects of The Mitochondrial K-ATP channel regulators on neuronal cell population and neurological function after ischemia reperfusion in the rat. Materials and Methods: Rats temporarily subjected to four vessels occlusion for 15 minutes followed by 24 hours reperfusi...
متن کاملDobutamine improves liver function after hemorrhagic shock through induction of heme oxygenase-1.
RATIONALE Induction of heme oxygenase-1 (HO-1) protects the liver against reperfusion injury after hemorrhagic shock. Previous data suggest that the beta(1)-adrenoceptor agonist dobutamine induces HO-1 in hepatocytes. OBJECTIVES To investigate the functional significance of dobutamine pretreatment for liver function after hemorrhagic shock in vivo. METHODS Anesthetized rats received either ...
متن کامل